

Result and Discussion

The chapter deals with the result of the study discussed about it. At the end of this chapter interpretation has been made, explanation has been tried to put down and an attempt has been done to reveal the cause behind it.

Variables	Mean	Std Deviation	CV
Age	50.12	9.07	18.09
Education	6.07	3.15	51.89
Exposure Unit	2.58	0.65	25.20
Family Members	5.30	1.45	27.35
Family Labour	5.52	0.68	12.95
Size of holding	5.97	1.48	24.79
No of Fragments	3.38	1.22	36.09
Cropping Intensity	182.45	21.20	11.62
Homested Land	0.24	0.06	25
Marketable Surplus	32.28	8.77	27.17
Marketed Surplus	137.80	15.80	11.46
Distance From Market	4.55	1.37	30.99
Cost of fuel	205.95	81.42	39.53

Table-3 Distribution of variables in terms of Mean, Standard Deviation

Result and Discussion

Family Expenditure	243.32	95.87	34.40
NRM Motivation	8.07	0.78	9.66

Coefficient of Corelation:

Table 4: Coefficient of correlation between crop diversity (Ycd) and15 exogenous variable (x1-x15)

Independent Variable	r Value	Remarks
Age(x1)	-0.1	
Education(x2)	-0.044	
Exposure Unit(x3)	0.073	
Family Members(x4)	0.05	
Family Labour(x5)	0.079	
Size of holding(x6)	0.052	
No of Fragments(x7)	0.109	
Cropping Intensity(x8)	0.220	
Home-stead Land(x9)	0.051	
Marketable Surplus(x10)	0.139	
Marketed Surplus(x11)	0.056	
Distance From Market(x12)	-0.241	*
Cost of fuel(x13)	0.003	
Family Expenditure(x14)	0.013	
NRM Motivation(x15)	-0.038	

Result: Table shows that co-efficient of correlation between Crop diversity (Y_{cd}) and Distance from market (X_{12}) . They have been found that 5% level of significance.

Revelation: Distance from market co related with crop diversity.

Independent Variable	r Value	Remarks
Age(x1)	-0.011	
Education(x2)	0.101	
Exposure Unit(x3)	-0.165	
Family Members(x4)	0.088	
Family Labour(x5)	0.157	
Size of holding(x6)	0.025	
No of Fragments(x7)	0.207	10%
Cropping Intensity(x8)	0.081	
Home-stead Land(x9)	0.098	
Marketable Surplus(x10)	-0.057	
Marketed Surplus(x11)	-0.045	
Distance From	0.085	
Market(x12)		
Cost of fuel(x13)	0.066	
Family Expenditure(x14)	0.007	
NRM Motivation(x15)	-0.026	

Table 5: Coefficient of correlation between l	Disease Pest Incidentin
Pulse (Y _{p1}) and 15 exogenous vari	able(x1-x15)

Result: Table shows that co-efficient of correlation between Disease pest incident in pulse (Y_{p1}) and No of fragments (X_7) . They have been found that 10% level of significance.

Revelation: The more the number of fragments, it has been difficult to manage. Fragmentation has been found a character to disease pest incident.

Independent Variable	r Value	Remarks
Age(x1)	-0.128	
Education(x2)	0.263	*
Exposure Unit(x3)	-0.044	
Family Members(x4)	0.052	
Family Labour(x5)	0.006	
Size of holding(x6)	0.268	*
No of Fragments(x7)	0.142	
Cropping Intensity(x8)	0.088	
Home-stead Land(x9)	-0.210	
Marketable Surplus(x10)	0.228	
Marketed Surplus(x11)	-0.022	
Distance From Market(x12)	-0.287	*
Cost of fuel(x13)	0.123	
Family Expenditure(x14)	0.081	
NRM Motivation(x15)	-0.174	

Table 6: Coefficient of correlation between Disease Pes	st
Management (Yp2) and 15 exogenous variable(X1-X15)

Result: Table shows that co-efficient of correlation between Disease pest management in pulse (Y_{p2}) and Education (X2), Size of holding(X6) and Distance from market (X_{12}) . They have been found that 5% level of significance.

Revelation: The higher size of holding, higher resource backup and when its supported by education and market, the better has been disease pest management.

Independent Variable	r Value	Remarks
Age(x1)	0.005	
Education(x2)	0.007	
Exposure Unit(x3)	-0.071	
Family Members(x4)	0.096	
Family Labour(x5)	0.179	
Size of holding(x6)	-0.090	
No of Fragments(x7)	0.108	
Cropping Intensity(x8)	-0.137	
Home-stead Land(x9)	0.129	
Marketable Surplus(x10)	0.181	
Marketed Surplus(x11)	0.305	*
Distance From Market(x12)	-0.033	
Cost of fuel(x13)	0.298	*
Family Expenditure(x14)	0.257	*
NRM Motivation(x15)	0.028	

Table 7: Coefficient of correlation between Soil health in pulse (Y_{p3}) and 15 exogenous variable(X1-X15)

Result: Table shows that co-efficient of correlation between Soil health maintained in $pulse(Y_{p3})$ and Marketed $surplus(X_{11})$, Cost of fuel (X_{13}) , Family expenditure (X_{14}) . They have been found that 5% level of significance.

Revelation: Soil health maintained in pulse cultivation has invited three causal support, better market price, family expenditure and better mobility. It has natural property to improve soil health.

Independent Variable	r Value	Remarks
Age(x1)	-0.059	
Education(x2)	0.134	
Exposure Unit(x3)	-0.138	
Family Members(x4)	-0.068	
Family Labour(x5)	-0.070	
Size of holding(x6)	0.005	
No of Fragments(x7)	0.034	
Cropping Intensity(x8)	0.096	
Home-stead Land(x9)	-0.160	
Marketable Surplus(x10)	-0.325	*
Marketed Surplus(x11)	0.045	
Distance From Market(x12)	0.066	
Cost of fuel(x13)	-0.116	
Family Expenditure(x14)	-0.218	
NRM Motivation(x15)	-0.057	

Table 8 Coefficient of correlation between No. of irrigation in $pulse(Y_{p4})$ and 15 exogenous variable(x1-x15)

Result: Table shows that co-efficient of correlation between No of Irrigation in pulse (Y_{p4}) and Marketed Surplus (X_{10}) . They have been found that 5% level of significance.

Revelation: Irrigation has become important to augment the productivity per unit are beyond the optimal. Hence it contributes to generate marketable surplus.

Independent Variable	r Value	Remarks
Age(x1)	-0.151	
Education(x2)	0.106	
Exposure Unit(x3)	-0.311	*
Family Members(x4)	0.154	
Family Labour(x5)	0.104	
Size of holding(x6)	-0.148	
No of Fragments(x7)	-0.162	
Cropping Intensity(x8)	-0.204	
Home-stead Land(x9)	-0.063	
Marketable Surplus(x10)	0.045	
Marketed Surplus(x11)	0.176	
Distance From Market(x12)	0.076	
Cost of fuel(x13)	-0.026	
Family Expenditure(x14)	-0.037	
NRM Motivation(x15)	-0.084	

Table 9: Coefficient of correlation between Pollution due to agrochemicals in pulse crop cultivation(Y_{p5}) and 15 exogenous variable(x1-x15)

Result: Table shows that co-efficient of correlation between Pollution due to agro-chemical in pulse crop cultivation (Y_{p5}) and Exposure unit (X_3) . They have been found that 5% level of significance.

Revelation: Pulse is most ecological tuned requires less fertilizer, management and irrigation. So, for the farmers they need better exposure in terms of environmental education make the crop economic viable and ecological suitable crop enterprise.

Independent Variable	r Value	Remarks
Age(x1)	-0.262	*
Education(x2)	0.075	
Exposure Unit(x3)	-0.052	
Family Members(x4)	-0.052	
Family Labour(x5)	-0.068	
Size of holding(x6)	0.119	
No of Fragments(x7)	0.058	
Cropping Intensity(x8)	0.045	
Home-stead Land(x9)	-0.162	
Marketable Surplus(x10)	0.126	
Marketed Surplus(x11)	0.109	
Distance From Market(x12)	0.001	
Cost of fuel(x13)	0.040	
Family Expenditure(x14)	0.044	
NRM Motivation(x15)	-0.022	

Table 10: Coefficient of correlation between combating climate chang	je
(Y _{p6}) and 15 exogenous variables(x1-x15)	

Result: Table shows that co-efficient of correlation between Combating climate change (Y_{p6}) and Age (X_1) . They have been found that 5% level of significance.

Revelation: Combating climate change has been related to the age character of respondent. Ecological education has got categorical responses to the target groups persuading pulse as the defeating crop enterprises having ruthless conformation with ecological function.

Independent Variable	r Value	Remarks
Age(x1)	0.278	
Education(x2)	-0.154	
Exposure Unit(x3)	-0.234	
Family Members(x4)	0.108	
Family Labour(x5)	0.117	
Size of holding(x6)	-0.232	
No of Fragments(x7)	-0.114	
Cropping Intensity(x8)	-0.325	
Home-stead Land(x9)	0.119	
Marketable Surplus(x10)	-0.133	
Marketed Surplus(x11)	0.588	**
Distance From Market(x12)	0.010	
Cost of fuel(x13)	0.179	
Family Expenditure(x14)	0.108	
NRM Motivation(x15)	-0.079	

Table 11: Coefficient of correlation between Return fr	om
pulse (Y _{7p}) and 15 exogenous variable (x1-x15)	

Result: Table shows that co-efficient of correlation between return from pulse (Y_{p7}) and marketed surplus (X_{11}) . They have been found that 1% level of significance.

Revelation: It has the age dimension and better marketability produced maximum return from the pulse crop cultivation.

Independent Variable	r Value	Remarks
Age(x1)	-0.132	
Education(x2)	0.227	10%
Exposure Unit(x3)	0.128	
Family Members(x4)	0.039	
Family Labour(x5)	0.005	
Size of holding(x6)	0.059	
No of Fragments(x7)	-0.056	
Cropping Intensity(x8)	-0.169	
Home-stead Land(x9)	-0.106	
Marketable Surplus(x10)	0.148	
Marketed Surplus(x11)	0.088	
Distance From Market(x12)	0.178	
Cost of fuel(x13)	0.138	
Family Expenditure(x14)	0.123	
NRM Motivation(x15)	-0.225	

Table 12:	Coefficient of corr	elation between	Marketability i	in pulse
	(Y _{8p}) and 15 exc	ogenous variable	e (x1-x15)	

Result: Table shows that co-efficient of correlation between Marketability in $pulse(Y_{p8})$ and Education(X₂). They have been found that 5% level of significance.

Revelation: value added agriculture needs educational intervention from the practicing farmers in the form of verified skill, rejuvenated knowledge and reinforce practices. It's more relevant for pulse crop.

Independent Variable	r Value	Remarks
Age(x1)	-0.179	
Education(x2)	0.063	
Exposure Unit(x3)	-0.219	
Family Members(x4)	0.107	
Family Labour(x5)	0.083	
Size of holding(x6)	0.059	
No of Fragments(x7)	-0.075	
Cropping Intensity(x8)	-0.026	
Home-stead Land(x9)	0.020	
Marketable Surplus(x10)	0.106	
Marketed Surplus(x11)	-0.119	
Distance From Market(x12)	0.270	*
Cost of fuel(x13)	0.061	
Family Expenditure(x14)	0.071	
NRM Motivation(x15)	0.321	*

Table 13: Coefficient of correlation between Disease pest incident in rice (Y_{r1}) and 15 exogenous variables(x1-x15)

Result: Table shows that co-efficient of correlation between Disease pest incident in rice crop (Y_{1R}) and Distance from market (X_{12}) , Natural resource management motivation (X_{15}) . They have been found that 5% level of significance.

Revelation: Distance from market play a vital role in disease pest incident in rice. Increasing the distance of market from the field produces difficulty to the farmer to buy the pesticide within time and increasing the pesticide. NRM motivation is important in disease pest incident in rice.

Independent Variable	r Value	Remarks
Age(x1)	-0.172	
Education(x2)	-0.041	
Exposure Unit(x3)	-0.092	
Family Members(x4)	0.086	
Family Labour(x5)	0.065	
Size of holding(x6)	0.113	
No of Fragments(x7)	0.062	
Cropping Intensity(x8)	0.201	
Home-stead Land(x9)	0.09	
Marketable Surplus(x10)	-0.161	
Marketed Surplus(x11)	-0.218	10%
Distance From Market(x12)	0.040	
Cost of fuel(x13)	-0.037	
Family Expenditure(x14)	-0.117	
NRM Motivation(x15)	0.028	

Table 14: Coefficient of correlation between Disease pest management in rice(Y_{r2}) and 15 exogenous variable(x1-x15)

Result: Table shows that co-efficient of correlation between Disease pest management (Y_{R2}) and Marketed surplus (X_{11}) . They have been found that 5% level of significance.

Revelation: Disease pest management in rice has been related to marketed surplus. So, increasing marketed surplus helps in better disease pest management in rice crop cultivation.

Independent Variable	r Value	Remarks
Age(x1)	0.170	
Education(x2)	0.067	
Exposure Unit(x3)	-0.061	
Family Members(x4)	0.008	
Family Labour(x5)	0.112	
Size of holding(x6)	-0.055	
No of Fragments(x7)	-0.014	
Cropping Intensity(x8)	-0.141	
Home-stead Land(x9)	-0.137	
Marketable Surplus(x10)	0.063	
Marketed Surplus(x11)	0.087	
Distance From Market(x12)	0.183	
Cost of fuel(x13)	0.178	
Family Expenditure(x14)	0.214	10%
NRM Motivation(x15)	0.120	

Table 15: Coefficient of correlation between Soil Health maintained in rice (Y_{r3}) and 15 exogenous variable(x1-x15)

Result: Table shows that co-efficient of correlation between soil health maintained in rice (Y_{3R}) and Family expenditure (X_{12}) . They have been found that 10% level of significance.

Revelation: Family expenditure has been related to soil health maintained in rice crop.

Independent Variable	r Value	Remarks
Age(x1)	0.0127	
Education(x2)	0.014	
Exposure Unit(x3)	0.052	
Family Members(x4)	0.090	
Family Labour(x5)	0.068	
Size of holding(x6)	-0.006	
No of Fragments(x7)	0.148	
Cropping Intensity(x8)	-0.181	
Home-stead Land(x9)	-0.130	
Marketable Surplus(x10)	0.088	
Marketed Surplus(x11)	0.091	
Distance From Market(x12)	0.183	
Cost of fuel(x13)	0.179	
Family Expenditure(x14)	0.163	
NRM Motivation(x15)	-0.194	

Table 16: Coefficient of correlation between No of irrigation i	n
rice(Y _{r4}) and 15 exogenous variable(x1-x15)	

Result: Table shows that none of the variable has been found significant.

Table 17: Coefficient of correlation between Pollution due to agro
chemical in rice (Yr5) and 15 exogenous variable(x1-x15)

Independent Variable	r Value	Remarks
Age(x1)	0.074	
Education(x2)	0.099	
Exposure Unit(x3)	0.045	
Family Members(x4)	-0.086	
Family Labour(x5)	-0.030	
Size of holding(x6)	-0.008	
No of Fragments(x7)	0.051	
Cropping Intensity(x8)	-0.059	
Home-stead Land(x9)	-0.002	
Marketable Surplus(x10)	0.075	

Marketed Surplus(x11)	-0.195	
Distance From Market(x12)	0.109	
Cost of fuel(x13)	0.120	
Family Expenditure(x14)	0.246	*
NRM Motivation(x15)	0.132	

Result: Table shows that co-efficient of correlation between Pollution due to agrochemical in rice (Y_{R4}) and Family expenditure (X_{12}) . They have been found that 5% level of significance.

Revelation: Irrigation in rice is cost effective. So increasing the irrigation cost also increased the family expenditure.

Table 18: Coefficient of correlation between combating climate change in rice crop cultivation (Y_{r6}) and 15 exogenous variable(x1-x15)

Independent Variable	r Value	Remarks
Age(x1)	-0.061	
Education(x2)	0.057	
Exposure Unit(x3)	-0.095	
Family Members(x4)	-0.058	
Family Labour(x5)	-0.050	
Size of holding(x6)	-0.072	
No of Fragments(x7)	-0.121	
Cropping Intensity(x8)	0.054	
Home-stead Land(x9)	-0.009	
Marketable Surplus(x10)	-0.049	
Marketed Surplus(x11)	0.063	
Distance From Market(x12)	-0.048	
Cost of fuel(x13)	0.018	
Family Expenditure(x14)	-0.032	
NRM Motivation(x15)	-0.039	

Result: Table shows that none of the variable has been found significant.

Independent Variable	r Value	Remarks		
Age(x1)	-0.467			
Education(x2)	0.442	**		
Exposure Unit(x3)	-0.292			
Family Members(x4)	0.114			
Family Labour(x5)	0.048			
Size of holding(x6)	0.335	**		
No of Fragments(x7)	0.372	**		
Cropping Intensity(x8)	0.136			
Home-stead Land(x9)	-0.073			
Marketable Surplus(x10)	0.173			
Marketed Surplus(x11)	-0.176			
Distance From Market(x12)	0.033			
Cost of fuel(x13)	0.026			
Family Expenditure(x14)	0.041			
NRM Motivation(x15)	0.097			

Table 19: Coefficient of correlation between Return from ricecrop (Yr7) and 15 exogenous variables(x1-x15)

Result: Table shows that co-efficient of correlation between Return from rice (Y_{r7}) and Education(X2), Size of holding, No of fragments(C7). They have been found that 1% level of significance.

Revelation: Return has been related to education, size of holding and no of fragmented land. The higher the size of holding, higher the fragmented land and when it's supported by education, the better has been the return from that crop.

Independent Variable	r Value	Remarks
Age(x1)	-0.085	
Education(x2)	-0.217	
Exposure Unit(x3)	0.311	*
Family Members(x4)	0.073	
Family Labour(x5)	0.026	
Size of holding(x6)	-0.044	
No of Fragments(x7)	-0.027	
Cropping Intensity(x8)	0.036	
Home-stead Land(x9)	-0.020	
Marketable Surplus(x10)	-0.157	
Marketed Surplus(x11)	-0.055	
Distance From Market(x12)	-0.116	
Cost of fuel(x13)	-0.333	
Family Expenditure(x14)	-0.313	
NRM Motivation(x15)	-0.065	

Table 20: Coefficient of correlation I	between Marketability in
rice (Y _{r8}) and 15 exogenous	variables(x1-x15)

Result: Table shows that co-efficient of correlation between Marketability in Rice(Y_{R8}) and Exposure unit (X_3). They have been found that 5% level of significance.

Revelation: Exposure unit has been related to Marketability in rice. For the farmer the need better exposure in terms of enterprise education make the crop economic viable and ecological suitable.

Stepwise Regression Analysis:

Table- 21 Stepwise regression analysis between crop diversity (Y_{cd}) and 15 exogenous variable(x1-x15)

Retention of significant causal variable step-14

Variable	R²%	Adjusted R ² %	Std. Error of the estimate
x8 x10	8.1	4.9	7.367

<u>Revelation</u>: It's estimated that the two causal variable Cropping intensity(x8) and Marketable surplus(x10) have exerted the heights functional impact on crop diversity (Y_{cd}). These two variables together have explained 8.1% of variance in Crop Diversity.

Table- 22 Stepwise regression analysis between Disease Pest Incident in Pulse (Y_{p1}) and 15 exogenous variable(x1-x15)

Retention of significant causal variablesStep-14

Variable	$R^2\%$	Adjusted R ² %	Std. Error of the
			estimate
x7	5.3	2.00	.6425
x6			

<u>Revelation</u>: It is estimated that the two causal variable No. of fragments(x7) and Size of Holding(x6) have exerted the heights functional impact on Disease Pest Incident in pulse (Y_{P1}). These two variables together have explained 5.3% of variance in Disease pest incident.

Table- 23 Stepwise regression analysis between Disease Pest Management (Y_{p2}) and 15 exogenous variable(X1-X15)

Variable	R²%	Adjusted R ² %	Std. Error of
			the estimate
x2	31.5	26.6	.573
x12			
x9			
x10			

Retention of significant causal variables at the last Step-12

Revelation: Its estimated that the four causal variables education(x2) ,Distance from Market(x12), Home stead land(x9) and Marketable surplus(x10) have exerted the heights functional impact on Disease Pest Management in Pulse $crop(Y_{p2})$. These two variables together have explained 31.5 percent of variance in Disease pest management.

Table- 24 Stepwise regression analysis betweenSoil health in pulse (Y_{p3}) and 15 exogenous variable(X1-X15)

Variable	R²%	Adjusted R ² %	Std. Error of the
			estimate
x11	25.50	20.1	.556
x7			
x13			
x6			

Retention of significant causal variables at the last Step-12

Revelation: Its estimated that the four causal variables Marketed surplus(x11), No of fragments(x7), Cost of fuel(x13) and Size of holding(x6) have exerted the heights functional impact on Soil health

maintained in pulse $crop(Y_{p3})$. These four variables together have explained 25.5 percent of variance in Soil health maintained in pulse crop.

Table- 25 Stepwise regression analysis between No. of irrigation in pulse (Y_{p4}) and 15 exogenous variable(x1-x15)

Retention of significant causal variables at the last Step-14

Variable	R²%	Adjusted R ² %	Std. Error of the estimate
x2 x10	13.6	10.6	.549

Revelation: Its estimated that the two causal variable Education(x2) and Marketable Surplus(x10) have exerted the heights functional impact on Irrigation in Pulse $crop(X_{p4})$. These two variables together have explained 13.6 percent of variance in irrigation in pulse.

Table- 26 Stepwise regression analysis between Pollution due to agrochemicals in pulse crop cultivation(Y_{p5}) and 15 exogenous variable(x1-x15)

Variable	R ² %	Adjusted R ² %	Std. Error of the
			estimate
x3	14.9	11.9	.5979
x8			

Retention of significant causal variables at the last step-14

Revelation: It's estimated that the two causal variables exposure unit(x3) and cropping intensity(x8) have exerted the heights functional impact on pollution due to agro-chemical in pulse. These two variables together have explained 14.9 percent of variance in pollution due to agro-chemical in pulse.

Table- 27 Stepwise regression analysis between combating climate change (Y_{p6}) and 15 exogenous variable (x1-x15)

Variable	R²%	Adjusted R ² %	Std. Error of the estimate
x1 x10	8.2	5	.5905

Retention of significant causal variables at the last step-14

Revelation: It's estimated that the two causal variables age(x1) and marketable surplus(x10) have exerted the heights functional impact on combating climate change in pulse cultivation. These two variables together have explained 8.2 percent of variance in combating climate change in pulse cultivation.

Table- 28 Stepwise regression analysis between Return from pulse (Y_{7p}) and 15 exogenous variable (x1-x15)

Variable	R²%	Adjusted R ² %	Std. Error of the
			estimate
x3	47.5	43.6	563.702
x11			
x1			
x8			

Retention of significant causal variables at the last Step-12

Revelation: It's estimated that the four causal variables exposure unit(x3), Marketed surplus(x11), age(x1), cropping intensity(x8) have exerted the heights functional impact on return from pulse $\operatorname{crop}(X_{p7})$. These two variables together have explained 47.2 percent of variance in return from pulse crop.

Table- 29 Stepwise regression analysis between Marketability in pulse (Y_{8p}) and 15 exogenous variable(x1-x15)

Variable	R ² %	Adjusted R ² %	Std. Error of the estimate
x8 x6	10.1	7	.698

Retention of significant causal variables at the last Step-15

Revelation: Its estimated that the two causal variables Cropping intensity(x8) and size of holding(x6) have exerted the heights functional impact on marketability in pulse $\operatorname{crop}(X_{p8})$. These two variables together have explained 10.1 percent of variance in marketability in pulse crop.

Table- 30 Stepwise regression analysis between Disease pest incident in rice (Y_{rl}) and 15 exogenous variable(x1-x15)

Retention of significant causal variables at the last step-14

Variable	R²%	Adjusted R ² %	Std. Error of the estimate
x15 x3	16.50	13.50	.625

Revelation: Its estimated that the two causal variables importance of natural resource management motivation(x15) and exposure unit(x3) have exerted the heights functional impact on disease pest incident in rice(Y_{r1}). These two variables together have explained 16.5 percent of variance in disease pest incident in rice.

Table- 31 Stepwise regression analysis between Disease pest management in rice (Y_{r2}) and 15 exogenous variable(x1-x15)

Variable	R²%	Adjusted R ² %	Std. Error of the estimate
x11	7.30	4.10	.653
x10			

Retention of significant causal variables at the last Step

Revelation: Its estimated that the two causal variables marketed surplus(x11) and marketable surplus(x10) have exerted the heights functional impact on disease pest management in rice(Y_{r2}). These two variables together have explained 7.3 percent of variance in disease pest management in rice.

Table- 32 Stepwise regression analysis betweenSoil Health maintained in rice (Yr3) and 15 exogenous variable(x1-x15)

Retention of significant causal variables Step-14

Variable	R²%	Adjusted R ² %	Std. Error of the estimate
X9	5.60	2.30	.7193
XI			

Revelation: Its estimated that the two causal variables home stead land(x9) and age(x1) have exerted the heights functional impact on soil health maintained in rice(Y_{r3}). These two variables together have explained 5.6 percent of variance in DPM in rice.

Table- 33 Stepwise regression analysis between No of irrigation in rice(Y_{r4}) and 15 exogenous variable(x1-x15)

Retention of significant causal variablesStep-14

Variable	R²%	Adjusted R ² %	Std. Error of the estimate
X7	6.50	3.20	.596
X6			

Revelation: Its estimated that the two causal variables no. of fragments(x7) and size of holding(x6) have exerted the heights functional impact on irrigation in rice(Y_{r4}). These two variables together have explained 6.5 percent of variance in irrigation in rice.

Table- 34 Stepwise regression analysis between Pollution due to agro chemical in rice (Y_{r5}) and 15 exogenous variable (x1-x15)

Retention	of significant	causal	variablesStep-14
-----------	----------------	--------	------------------

Variable	R²%	Adjusted R ² %	Std. Error of the estimate
X11 X14	11.50	8.40	.619

Revelation: Its estimated that the two causal variables marketed surplus(x11) and family expenditure(x14) have exerted the heights functional impact on pollution due to rice cultivation(Y_{r5}). These two variables together have explained 11.5 percent of variance in pollution due to rice cultivation.

Table- 35 Stepwise regression analysis between combating climate change in rice crop cultivation (Y_{r6}) and 15 exogenous variable (x1-x15)

Variable	R²%	Adjusted R ² %	Std. Error of the
			estimate
x7	3.30	-0.1	.486
x8			

Retention of significant causal variables at the Step-14

Revelation: Its estimated that the two causal variable Cropping intensity(x8) and no. of fragments(x7) have exerted the heights functional impact on combating climate chang in rice cultivation(Y_{r6}). These two variables together have explained 3.3 percent of variance in combating climate chang in rice cultivation.

Table- 36 Stepwise regression analysis between Return from rice crop (Y_{r7}) and 15 exogenous variable(x1-x15)

Variable	R²%	Adjusted R ² %	Std. Error of the
			estimate
x3	37.50	34.20	485.15
x7,x1			

Retention of significant causal variables at the Step-13

Revelation: Its estimated that the three causal variables exposure unit(x3), no. of fragments(x7) and age(x1) have exerted the heights functional impact on return from rice cultivation(X_{r7}). These two variables together have explained 37.5 percent of variance in return from rice cultivation.

Table- 37 Stepwise regression analysis between Marketability in rice (Y_{r8}) and 15 exogenous variable (x1-x15)

Variable	$R^2\%$	Adjusted R ² %	Std. Error of the
			estimate
x3	19.10	16.20	.513
x13			

Retention of significant causal variables at the Step-14

Revelation: Its estimated that the two causal variable exposure unit(x3) and cost of fuel(x13) have exerted the heights functional impact on marketability in rice(Y_{r8}). These two variables together have explained 19.2 percent of variance in marketability in rice.

Summary of Comparison

Predicted character - Disease Pest Incident

Predicted character – Disease Pest Incident

Predicted character – Disease Pest Management

Predicted character – No. of Irrigation

Pulse Cultivation and Enterprises: The Economy, Ecology and Environment Research Book-2016, ISBN: 978-93-85822-23-0 109

which sensitization of

pollution generated.

marketable surplus may lead

to increasing family

expenditure.

Revelation: It's interesting to note that the following left side dependent variables viz. crop diversity (Y_{cd}), disease pest management in pulse(Y_{p3}), soil health maintained(Y_{p4}), Combating climate change(Y_{p7}) have formed a peer conglomeration with right side of independent variables viz. exposure unit(x3), family members(x4), family labor(x5), size of holding(x6), no of fragments(x7), cropping intensity(x8), home stead land(x9), marketable surplus(x10), cost of fuel(x13), family expenditure(x14), natural resource management(x15). This conglomeration can be renamed as strategic pulse enterprise for e.g. crop diversity has been increased with inclusion of pulse which intern to contribution to soil health, to reduce the need for disease pest management and at the same time has helped combating climate change. So this conglomeration can be renamed as strategic pulse enterprise.

The other conglomeration has been incorporated the following variables disease pest incident(Y_{p2}), no. of irrigation in pulse(Y_{p5}), pollution due to agrochemical in pulse(Y_{p6}), return from pulse(Y_{p8}), marketability in pulse(Y_{p9}) which rename as managing pulse enterprise, basically variables having short term managerial impact have been incorporated here and the independent variables are age(x1), education(x2), marketed surplus(x11) and distance from market(12).

CANONICAL COVARIATE ANALYSIS (RICE)

The strategic conglomeration of, left side (Y_r) and right side(X) variables with respective sub-grouping.

Revelation: It's interesting to note that the left side variables or dependent variables for rice enterprise formed tow subgroups. The first groups is comprised of no. of irrigation in rice(Y_{r4}), combating climate change(Y_{r6}) and marketability in rice(Y_{r8}). So these dependent variables have formed a strategic combination to ensure water supply to rice at the same time mitigating climate change fetching more return from rice by increasing marketability. These group of dependent variables accommodate and interacting with right side of variables age(x1), exposure unit(x3), home stead land(x9), marketed surplus(x11).. The second subgroup of dependent variables have been formed amongst disease pest incident in rice(Y_{r1}), pollution due to agrochemical in rice(Y_{r5}), return from rice(Y_{r7}). This

conglomeration of dependent variables basically management oriented while others are strategy oriented. The second group of dependent variables accommodate and interact with following independent at right side variables education(x2), family member(x4), family labour(x5), size of holding(x6), no of fragments(x7), cropping intensity(x8), marketed surplus(x10), distance from market(x12), cost of fuel(x13), family expenditure, natural resource management(x15).

Factor Analysis:

Factor	Re-naming	Variable	% of	Cumulative %
		Included	Variable	
Factor-1	Family	x5	22.87	22.87
	labour			
Factor-2	Resource	x6,x7	18.35	41.22
Factor-3	Energy	x13,x14	19	60.22
	Expenditure			
	Mode			
Factor-4	Marketable	x10	8.16	68.39
	surplus			
Factor-5	Geo-spatial	x3, x12	5.90	74.29
Factor-6	Age	x1	5.632	80
Factor-7	Home	x2, x9, x11	5.57	85.50
	Marketability			
Factor-8	Farm	x4, x8, x15	4.35	89.85
	Capacity			

Table-38 Conglomeration of variables based on factor loading...

Revelation:

The factor analysis has been applied here to conglomerate the apparently different variables into homogeneous group called factor which has been

renamed here also. Here all together eight factors has been identified, isolated and along-side their respected variables has been given.

It has been found that factor-1 is conglomerated the solitary variables having 22.87 percent variance. So, it indicates that the variable family labor has been extremely important for better enterprise in pulse and rice.

Factor-2 has been accommodated with two variables, size of holding(x6) and no. of fragments(x7) and they are renamed as resource factor.

Factor-3 has been accommodated with two variables cost of fuel(x13) and family expenditure(x14) and they are renamed as Energy expenditure mode. Factor-4 has been accommodated with only one variable and name as marketable surplus(x10).

Factor-5 has been accommodated with two variables, exposure unit(x3) and distance from market(x12).

Factor-6 has been accommodated with only one variable which is called as age(x1) factor.

Factor-7 has been accommodated with three variables, education(x2), home stead land(x9) and marketed surplus(x11). They are renamed as home marketability factor.

Factor-8 has been accommodating with three variables, family member(x4), cropping intensity(x8) and NRM motivation(x15). They are renamed as farm capacity factor.